5 research outputs found

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    Get PDF
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    Get PDF
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    No full text
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo

    Modelling and Simulation of ERTMS for Current and Future Mobile Technologies

    Get PDF
    Nowadays, train control in-lab simulation tools play a crucial role in reducing extensive and expensive on-site railway testing activities. In this paper, we present our contribution in this arena by detailing the internals of our European Railway Train Management System in-lab demonstrator. This demonstrator is built over a general-purpose simulation framework, Riverbed Modeler, previously Opnet Modeler. Our framework models both ERTMS subsystems, the Automatic Train Protection application layer based on movement authority message exchange and the telecommunication subsystem based on GSM-R communication technology. We provide detailed information on our modelling strategy. We also validate our simulation framework with real trace data. To conclude, under current industry migration scenario from GSM-R legacy obsolescence to IP-based heterogeneous technologies, our simulation framework represents a singular tool to railway operators. As an example, we present the assessment of related performance indicators for a specific railway network using a candidate replacement technology, LTE, versus current legacy technology. To the best of our knowledge, there is no similar initiative able to measure the impact of the telecommunication subsystem in the railway network availability.The work described in this paper was produced within the Training and Research Unit UFI11/16 funded by the UPV/EHU. This work was supported by the EU FP7-SEC-2011-1 Collaborative Research Project entitled SECurity of Railways against Electromagnetic aTtacks, SECRET Project. This work was also supported by the Spanish Ministry of Economy and Competitiveness through the SAREMSIG TEC2013-47012-C2-1-R project (Contribution to a Safe Railway Operation: Evaluating the effect of Electromagnetic Disturbances on Railway Control Signalling Systems), funded under the call Programa Estatal de Investigación, Desarrollo e Innovación and oriented towards Retos de la Sociedad 2013

    Eurobalise-Train communication modelling to assess interferences in railway control signalling systems

    Get PDF
    The evolution of the railway sector depends, to a great extent, on the deployment of advanced railway signalling systems. These signalling systems are based on communication architectures that must cope with complex electromagnetical environments. This paper is outlined in the context of developing the necessary tools to allow the quick deployment of these signalling systems by contributing to an easier analysis of their behaviour under the effect of electromagnetical interferences. Specifically, this paper presents the modelling of the Eurobalise-train communication flow in a general purpose simulation tool. It is critical to guarantee this communication link since any lack of communication may lead to a stop of the train and availability problems. In order to model precisely this communication link we used real measurements done in a laboratory equipped with elements defined in the suitable subsets. Through the simulation study carried out, we obtained performance indicators of the physical layer such as the received power, SNR and BER. The modelling presented in this paper is a required step to be able to provide quality of service indicators related to perturbed scenarios.The work described in this paper is partially supported by the EU FP7-SEC-2011-1 Col-laborative Research Project entitled SECRET—SECurity of Railways against Electromagnetic aTtacks—and by the EU FP7 Research Project entitled EATS—ETCS Advanced Design Test- ing and Smart Train Positioning System. This work is also supported by the Spanish Min- istry of Economy and Competitiveness through the SAREMSIG TEC2013-47012-C2 project— Contribution to a Safe Railway Operation: Evaluating the effect of Electromagnetic Disturb- ances on Railway Control Signalling Systems. This work is partially produced within the Training and Research Unit UFI11/16 funded by the UPV/EHU
    corecore